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Abstract

Verifying the integrity of control computers in
adverse operating environments is a key issue in
the development, validation, certification, and
operation of critical control systems. Future
commercial aircraft will necessitate flight-critical
systems with high reliability requirements for
stability augmentation, flutter suppression, and
guidance and control. Operational integrity of
such systems in adverse environments must be
validated. This paper considers the problem of
applying dynamic detection techniques to
monitoring the integrity of fault tolerant control
computers in critical applications. Specifically,
this paper considers the detection of malfunctions
in an aircraft flight control computer (FCC) that is
subjected to electromagnetic environment (EME)
disturbances during laboratory testing. A
dynamic monitoring strategy is presented and
demonstrated for the FCC from glideslope
engaged until flare under clear air turbulence
conditions using a detailed simulation of the
B737 Autoland. The performance of the
monitoring system is analyzed.

1. INTRODUCTION

Verifying the integrity of the control computer in
adverse, as well as nominal, operating
environments is a key issue in the development,
certification, and operation of critical control
systems. Future advanced aircraft will require
systems for stability augmentation and flutter
suppression, as well as guidance and control.
Such systems will be flight-critical, since the
flight of the aircraft will depend on reliable
operation of these systems. Laboratory
experiments show that control computers that are
subjected to electromagnetic disturbances can
malfunction and cause catastrophic departures in

performance of the closed-loop system [1] — [2].
The integrity of fault tolerant control computers
in critical applications can be viewed as the
reliable system-level operation of controller
functions such as redundancy management
decisions, control law calculations, and
input/output (I/O) rate and range checks [3]. This
paper is concerned only with the design of a
Control Law Calculation Malfunction (CLCM)
detector. A design strategy for the CLCM was
developed and analyzed in previous work [3] -
[4]. In this time-varying model-based detection
strategy, the threshold is scheduled with the
models used to estimate the correct control
command. This paper presents an improvement
on previous work in the design of the detector
threshold. The use of linear parameter varying
models in the detector design was considered in
[5], but will not be utilized in this paper. The
problem formulation for the CLCM is reviewed
in Section 2. The design of the improved CLCM
detector is presented in Section 3. This design
applies dynamic detection techniques to
monitoring the integrity of a simulated control
computer. Malfunctions in the controller are
detected in terms of the residual between a
measurement of the calculation (that may result
from computer malfunctions) and an estimate of
the correct calculation for the nominal (no
malfunction) hypothesis. An extensive literature
review on fault detection was conducted and has
already been published [3]. These references are
not repeated here. In Section 4, the monitoring
strategy is demonstrated for the elevator
command of a B737 Autoland flight controller
from glideslope engaged until flare that resulted
from a detailed closed-loop simulation. In the
implementation of the time-varying dynamic
detector, the threshold is scheduled with the
models used to estimate the correct control
command [6]. The performance of the dynamic
monitoring strategy is analyzed in terms of



probability of false alarm and probability of a
missed detection.

2. PROBLEM FORMULATION

The objective of this paper is the design of a
Control Law Calculation Malfunction (CLCM)
detector. The problem is formulated for the case
of monitoring a fault tolerant controller with N
processors that each calculates M control laws. A
separate detector monitors each control law
calculation from each processor, and is referred to
as the “local detector”. This paper considers the
design of the local detector only. In terms of
monitoring the integrity of the control law
calculations, controller malfunction is defined as
follows.

DEFINITION 1: The jth control law calculation
of the ith processor is the result of a malfunction
if:

'Axij(k)‘ > sij(k) for K time steps 1)

Axg(k) = change in the jth control law

calculation of the ith processor
due to malfunction

sij(k) = maximum allowable variation of xij(k)

| = absolute value

The change Axij(k) in the calculation of the jth

control law of the ith processor due to
malfunction is defined as:

AxI(K) = xd(k j i*

xJ() = x] (0 - Bl x)(0) | x; @)

xij(k) = actual jth control law calculation of

the ith processor at time k, which may
reflect a malfunction

xiJ (k) = correct (no malfunction) control law
calculation j of the ith processor at k

-

.k .
it _ .
X7 =setofall xij(k) up to time k

. .k
E[xlJ k)| X IJ :l = conditional expectation of

correct (no malfunction) control

calculation j at time step k given all
xij (k) up to time k
command

The correct (no malfunction)

calculation, xij (k) , in equation (2) is defined:
j — Ty Gigd Jwd
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xij (k) = correct (no malfunction) control law
calculation j from the ith processor;

i=1,2, .., N; j=1,..,M; xJ() e R
ﬁij (k) = inputs to jth control law calculation of
processor i from the plant simulation;
a(k) e RT
wg (k) = process noise for the jth control law

calculation of processor i ; wl(k) € R

Fij = system matrix for correct (no malfunction)
control law calculation j of processor i

Glj = input matrix for correct (no malfunction)

control law calculation j of processor i
k = data frame during which all control laws are
calculated

The system matrix Fij and input matrix éf are
constant over an interval of interest. The process

noise wf(k) in equation (3) accounts for

modeling error, noise in the input vector ﬁij(k)

from the aircraft sensors, and stochastic variations
in the command that result from exogenous
disturbances such as turbulence to the aircraft.

Command calculation j of the ith processor
(which may reflect malfunction) is defined:

xd(k+1) = Flox{(k) + Gl(0al 0 + thwigky @)

xg(k) = jth control law calculation from
processori; i=1,2,...,N;

i=12, ..M xi(k)eR

ﬁij(k) = inputs to jth control law calculation of



processor i from the plant; ﬁij(k) e RV
wg(k) = process noise for the jth control law

calculation of processor i, wf (k)eR

The initial state of the jth command calculation of

the ith processor is denoted as xf(ko).

ASSUMPTION 1: The initial state xij(ko) is a

Gaussian random variable with mean iij(ko) and
variance Pij (ko). The initial state of the
calculations of the ith processor are independent.

ASSUMPTION 2: The process noise wg(k) is
zero-mean, Gaussian, and white with variance

Qf The process noise of the calculations of the
ith processor are independent. Process noise

wij(k) is independent of the initial state xg(ko).
ASSUMPTION 3: Malfunction phenomena in

the ith processor that result in errors in the jth
control law calculation, modeled by equation (4),

can be represented by parameter changes AFij (k)
and Af}g(k) in the nominal values of matrices

Fij(k) and Gg(k) , respectively, so that:

Fl(k) = FJ + AF) (k) (5)
Gl =Gl +aGik) (6)

The terms E’ and Glj are the nominal values of

the matrices Fij(k) and Gij(k), respectively, are
constant over each interval of interest, and are

used in determining xij(k) for the reference
signal. The time-varying terms AFij(k) and
Aég(k) reflect the perturbation in matrices

Fij (k) and Gg(k) , respectively, that occur due to

malfunction. Substituting equations (5) and (6)
into equation (4) yields:

Xk +1) = [Fij + AFij(k)]xij(k) +

AT L )
[GiJ + AGg(k)}ig(k) +&iwlk)

Since the malfunction 1is uncertain, the

perturbations AFij(k) and Aég(k) are also
uncertain.

ASSUMPTION 4: The perturbations AFij(k) and

Aéij(k) are assumed to have the following
characteristics: (1) Under nominal conditions (no

malfunction), AFij(k) and Aég(k) are zero; (2)
Under malfunction conditions, the model of the

random perturbations AFij(k) and Aéij(k) are

generalized nonhomogeneous Poisson processes
[7] with Gaussian coefficients [3]. Malfunctions
affecting the control law calculations of processor
i are independent.

Measurements from the processor that are input to
the detector are:

21 (k) = Hixi (k) + vi(k) (8)

zij(k) = measurement of jth control command

from processor i; zg (k)eR;
i=1,...,N;j=1...,.M

xf(k) = jth control command calculation from
processor i, xg(k) €R

vij(k) = measurement noise for the jth control
command of processor i , Vij(k) € R

Hf = measurement weighting coefficient

ASSUMPTION 5: Measurement noise Vf(k) is
zero mean, Gaussian, and white with covariance

matrix Rij. The measurement noise of the
calculations of the ith processor are independent.

ASSUMPTION 6: Measurement noise Vij(k) is
assumed to be statistically independent of the

initial state xij(ko) and the process noise wf(k).



3. MONITOR DESIGN

The malfunctions to be detected are defined by
Definition 1. Detection of the phenomenon in
each of these definitions is binary and can,
therefore, be defined in terms of the general
hypotheses:

H; : Malfunction Condition
Hg : Nominal (No Malfunction) Condition  (9)

The calculations of the controller are observed via
noisy measurements Z; (k) with probability

density p[Zi k)| Hi] from each of the processors.

The approach for detecting malfunctions in the
control law calculations is shown in Figure 1:

(k-1 ¢ 23 (k)
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Fig. 1. Design Approach for Detecting Malfunctions in
Control Law Calculation j of Processor i .

The control law calculation j of the ith processor
is monitored using the residual:

il (k) = 2)(k) - Higd(k | k) (10)

where zij(k) and Hf are defined by equation (8),
. , .k
and JEiJ(k!k) is an estimate of E[xij(k)lX IJ }

defined in equation (2). The estimate )21] (k|k)

can be produced using a Kalman filter. Under the
stated assumptions and using a Gaussian

approximation for the conditional density of the

measurement under the malfunction hypothesis

l[)3], the Bayesian decision rule can be shown to
e: :

dx)=1

o T M ()
<
dl(k)=0

where the threshold is defined for three cases.
Case 1: P} (k) > PJ. (k)

. . ) 1/2
i oonicof | ool |
[Pf} () - P, (k)]2 Pi; (1) - Bf; (k)
j - N A
2P (kPG () [Pfi(k)]l TH (k)
P (k) - PJ; (k) [P J (k)]]/z
Plji(k) - Pgi(k)

M) = (12a)

Pgi (k) = variance of the residual under
hypothesis H

Plji (k) = variance of the residual under
hypothesis H;

“gi (k) = variance of the residual under
hypothesis H;

THg(k) = Bayes Criterion

Case 2: P}l (k) < PJ: (k)

il vl |
[Pgli(k) - Plji(k)]Z P00 - P (k)

M) =
i . Co12 (12b)
2P} (k)P4 (k) i [PIJi (k)]1 TH] (k)
GICR IO SN [
GG
Poi () = Py o)

Note tha}t for this case, the direction of the
inequalities in equation (11) is reversed.



Case 3: Plji (k) = P(i'i (k)

PJ. (k) In[THJ (k)]

In .
Hﬂi (k)

(12¢)

o
Mo ="

The performance of the detector is determined by
the probability of a false alarm and the probability
of a missed detection. The probability of false
alarm is:

P (k) = P[dg'(k) - 14H0]

. (13)
“ [ H"[Zij(k)

.k .
J J
Z: }dzi(k)

where PH, |:zij(k)

is the threshold, given by equation (12a) - (12¢), of
the decision rule. The probability of a missed
error detection in the jth calculation of the ith
processor is:

.k .
z} } is Gaussian [3] and A!(k)

Pml(k) =1- P[dij(k) = 1|H1]

. (14)
=1- Jj (k)le{zﬂk)

.k .
VA }dzf(k)

. .k
where le[zij(k)Zf } is approximated by a

Gaussian density [3] and AJ(k) is the threshold,

given by equations (12a) - (12¢) of the decision
rule. It can be shown [3], that this approximation
yields a conservative detector in the sense that the
probability of a missed detection will be lower
than that of the detector designed without the
Gaussian  approximation. However, the
probability of false alarm will be higher in this
detector.

4. SIMULATION EXAMPLE

The simulated controller calculates the control
laws from a detailed closed-loop B737 Autoland
Simulation. The implementation shown in this
paper consists of the monitor for the elevator
control law from a single processor. A Kalman

.command

filter estimates the correct calculation of the
elevator control command. These estimates are
used to generate residuals with the measured
elevator command calculations. The elevator
calculation monitor performs a
threshold test on the residual to make binary
decisions on the occurrence of malfunction in the
command calculation. The operating envelope for
the simulated aircraft controller is from glideslope
engaged until flare during the approach. During
the landing, the aircraft is subjected to light clear
air turbulence that consists of 20 kn. steady winds
with 2 ft/s gusts.

Model parameters of equation (3) required for the
Kalman filters are detailed in [6].  Since the
elevator command is time-varying, it is modeled
by a set of 27 linear models that are scheduled
over the operating envelope from glideslope
engaged until flare [6]. The interval over which
each model is applied is referred to as the interval
of interest for the detector associated with that
model. Since the detector is model-based, it is
scheduled with the model. Therefore, there are
effectively 27 detectors that are scheduled over
the operating envelope.

Analysis of data from laboratory experiments [1]
— [2] is currently incomplete. Therefore, in this
example, the mean and covariance of the residual
under the malfunction hypothesis are postulated
for illustration purposes. The mean and
covariance of the disturbance are defined as
follows for this simulation:

“}ii(k) = 2G’lgsterri(k) + 36gs‘cerri (k)) (15)

PL(k) = P (k) (16)

where uéstem(k) is the mean of the estimation
error  under the nominal hypothesis and

céstem (k) is the- standard deviation of the

estimation error under the nominal hypothesis
over the interval of interest. In this simulation,
the covariance under the malfunction hypothesis
is set equal to that for the nominal hypothesis.

Since the a priori probabilities are unknown, the
Bayes Criterion was determined by calculating
the threshold of equation (12) over each interval



of interest with THg(k) as the varying parameter.

For this example, the value of the Bayes Criterion
that optimized the tradeoff between probability of
miss and probability of false alarm was
determined to be the value at which these
probabilities were equal. The Bayes Criteria that
optimizes the performance of the detector over
each interval of interest is shown in Figure 2.
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Figure 2: Optimal Bayes Criterion for the Detector
Threshold of the Elevator Command Calculation
Monitor from Glideslope Engaged until Flare

As seen in Figure 2, the optimal value of the
Bayes Criterion for each interval of interest is a
constant value between 0.99 and 1.01.

The threshold for the decision rule of equations
(11) and (12) for the elevator command
calculation monitor is shown in Figure 3.
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Figure 3: Detector Threshold for the Elevator Command
Calculation Monitor from Glideslope Engaged until Flare

As seen in Figure 3, the thresholds for the first
few intervals of interest are much larger than
those for the rest of the operating envelope. This

is because the first few intervals represent a mode
switch to glideslope engaged.  The model
developed in [6] for this part of the operating
envelope is more difficult to obtain and is not as
accurate as those for the subsequent intervals.
However, as seen in Figure 3, the threshold for
the detector is less than 0.25 degrees everywhere
in the operating envelope including the first few
intervals. Therefore, elevator command
calculation errors of very small magnitude can be
detected. This is desirable since aircraft roll is
fairly sensitive to changes in elevator position
with the total elevator deflection being +/- 10
degrees.

The probability of false alarm for the elevator
command monitor is shown in Figure 4.
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Figure 4: Probability of False Alarm for the Detector

of the Elevator Command Calculation Monitor

As seen in Figure 4, the highest probability of a
false alarm is in the first few intervals. However,
even in these intervals, the probability of false
alarm is less than 0.045. Everywhere else in the
operating envelope, the probability of a false

alarm is more than an order of magnitude less
likely.

The probability of a missed detection for the
Bayesian elevator command calculation monitor
is shown in Figure 5.
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Figure 5: Probability of a Missed Detection for the
Detector of the Elevator Command Calculation
Monitor from Glideslope Engaged until Flare -

As can be seen in Figure 5, the probability of a
missed detection is less than 0.045 in the first few
intervals and more than an order of magnitude
less likely everywhere else in the operating
envelope. Note that the probabilities of a missed
detection and false alarm, shown in Figures 4 and
5, are essentially equal. This is because the Bayes
Criterion used in the design of the threshold was
selected such that these probabilities would be
equal.

5.0 SUMMARY AND CONCLUSIONS

This paper presents an improved dynamic
detection technique that can be applied to detect
malfunctions in a fault tolerant control computer.
Malfunction in the controller is detected by
monitoring the control law calculations. The
monitoring strategy was demonstrated for the
elevator command of ‘the B737 Autoland
simulation under light clear air turbulence from
glideslope engaged until flare. Detector
performance was analyzed in terms of probability
of false alarm and probability of a missed
detection. These probabilities were determined to
be less than 0.045, even under mode switching,
The methodology for monitoring control integrity
that was presented in this paper is limited by the
stated assumptions. The Gaussian and
independence assumptions for malfunctions in the
control laws idealize conditions that could occur.
Analysis of controller malfunction data obtained
during laboratory experiments is in progress and
may reveal the shortcomings of these
assumptions. In the event that the assumptions

are invalid, the design of the detector will be
modified. Future work includes: i) assessment of
the validity of assumptions made in the design of
the detector using controller malfunction data
obtained in laboratory experiments; ii) the
removal of invalid assumptions for a redesign of
the monitor to account for non-Gaussian densities
and correlation between observations; and iii)
implementation and demonstration of the monitor
in the laboratory.
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